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Principal Component Analysis

Suppose we have a m x n matrix A containing neural spike data, where the ith row vector a! corresponds to
the trace from the ith neuron. We define the zero-mean matrix X for the data as
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Note that looking downward through each column gives us zero-mean variables.

Recall from last lecture that there exists a transformation for X, Y = XQ, such that Y Ty is diagonal. This is
equivalent to decorrelating the variables in our data. Last time, we also found that the transformation Q was
actually V, the right singular vector (RSV) matrix in the singular decomposition of X: X = ULV,

Proof that Y'Y is diagonal:
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where A is the eigenvalue matrix of X7 X and X7 X is the covariance matrix associated with X.

To separate out the spikes from the noise, we perform principal component analysis (PCA) on the zero-mean
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We can see that the columns of V' are the important components of the data. By definition, the column
vectors of V are arranged in decreasing order, and the first 2 or 3 v vectors are usually significant. Focusing
on the first 3 columns of Y, we have
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where the s vectors can be thought of as scores for each of the traces. If we plot these 3D coordinates, we
would expect to see 3 clusters corresponding to the 3 neurons we have determined are important to our data.

Electrical Implementation

A rough block diagram of how we would implement PCA in an electrical circuit.
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