Scribe: Christine Wang

Principal Component Analysis

Suppose we have a $m \times n$ matrix A containing neural spike data, where the i th row vector \mathbf{a}_{i}^{T} corresponds to the trace from the i th neuron. We define the zero-mean matrix X for the data as

$$
X=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{m}^{T}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{1}^{T}-\overline{\mathbf{a}}^{T} \\
\vdots \\
\mathbf{a}_{m}^{T}-\overline{\mathbf{a}}^{T}
\end{array}\right], \overline{\mathbf{a}}^{T}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}^{T}
$$

Note that looking downward through each column gives us zero-mean variables.
Recall from last lecture that there exists a transformation for $X, Y=X Q$, such that $Y^{T} Y$ is diagonal. This is equivalent to decorrelating the variables in our data. Last time, we also found that the transformation Q was actually V, the right singular vector (RSV) matrix in the singular decomposition of $X: X=U \Sigma V^{T}$.

Proof that $Y^{T} Y$ is diagonal:

$$
\begin{aligned}
Y & =X V \\
Y^{T} Y & =V^{T} X^{T} X V \\
& =V^{T}\left(V \Sigma^{T} U^{T} U \Sigma V^{T}\right) V \\
& =V^{T}\left(V \Sigma^{T} \Sigma V^{T}\right) V \\
& =V^{T} V \Lambda V^{T} V \\
& =\Lambda
\end{aligned}
$$

where Λ is the eigenvalue matrix of $X^{T} X$ and $X^{T} X$ is the covariance matrix associated with X.
To separate out the spikes from the noise, we perform principal component analysis (PCA) on the zero-mean
data:

$$
\begin{aligned}
Y & =X V \\
& =\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{m}^{T}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right] \\
{\left[\begin{array}{lll}
\mathbf{y}_{1} & \cdots & \mathbf{y}_{n}
\end{array}\right] } & =\left[\begin{array}{ccc}
\mathbf{x}_{1}^{T} \mathbf{v}_{1} & \cdots & \mathbf{x}_{1}^{T} \mathbf{v}_{n} \\
\vdots & \ddots & \vdots \\
\mathbf{x}_{m}^{T} \mathbf{v}_{1} & \cdots & \mathbf{x}_{m}^{T} \mathbf{v}_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\left\langle\mathbf{x}_{1}, \mathbf{v}_{1}\right\rangle & \cdots & \left\langle\mathbf{x}_{1}, \mathbf{v}_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\mathbf{x}_{m}, \mathbf{v}_{1}\right\rangle & \cdots & \left\langle\mathbf{x}_{m}, \mathbf{v}_{n}\right\rangle
\end{array}\right]
\end{aligned}
$$

We can see that the columns of V are the important components of the data. By definition, the column vectors of V are arranged in decreasing order, and the first 2 or $3 \mathbf{v}$ vectors are usually significant. Focusing on the first 3 columns of Y, we have

$$
\begin{aligned}
\hat{Y} & =\left[\begin{array}{ccc}
\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\left\langle\mathbf{x}_{1}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{x}_{1}, \mathbf{v}_{2}\right\rangle & \left\langle\mathbf{x}_{1}, \mathbf{v}_{3}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\mathbf{x}_{m}, \mathbf{v}_{1}\right\rangle & \left\langle\mathbf{x}_{m}, \mathbf{v}_{2}\right\rangle & \left\langle\mathbf{x}_{m}, \mathbf{v}_{3}\right\rangle
\end{array}\right] \\
& =\left[\begin{array}{ccc}
s_{11} & s_{12} & s_{13} \\
\vdots & \vdots & \vdots \\
s_{m 1} & s_{m 2} & s_{m 3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathbf{s}_{1}^{t} \\
\vdots \\
\mathbf{s}_{m}^{T}
\end{array}\right]
\end{aligned}
$$

where the \mathbf{s} vectors can be thought of as scores for each of the traces. If we plot these 3 D coordinates, we would expect to see 3 clusters corresponding to the 3 neurons we have determined are important to our data.

Electrical Implementation

A rough block diagram of how we would implement PCA in an electrical circuit.

